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Abstract

In this paper, an analytical method with the aid of exp-function is used to obtain generalized
travelling wave solutions of a Nonlinear Evolution Equation of variable coefficients. It is shown
that the exp-function method, with the help of symbolic computation, provides a straightforward

and powerful mathematical tool to solve such equations arises in mathematical physics.
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1. INTRODUCTION

The investigation of exact solutions of Nonlinear Evolution Equation (NLEEs) plays an important
role in the study of nonlinear physical or mathematical phenomena. The importance of obtaining the
exact solutions of these nonlinear equations, if available, will facilitate the verification of numerical
solvers and aids in the stability analysis of solutions. In the past several decades, many effective
methods for obtaining exact solutions of NLEEs have been presented, such as the tanh-function
method [1,2] extended tanh method [3,4], F-expansion method [5,6], sine-cosine method [7,8]
Jacobian elliptic function method [9,10] homotopy perturbation method [11,12], variational
iteration method [13,14] and Adomian method [15,16] and so on.

Recently, He and Wu [17] proposed exp-function method, to obtain generalized solitary solutions
and periodic solutions. Applications of this method can be found in [18-20] for solving nonlinear
evolution equations arising in physical sciences. The solution procedure of this method is very
simple and can easily extend to other kinds of nonlinear evolution equations.

The present paper deals with the solution of the following Nonlinear Evolution Equation with

variable coefficient with the help of exp-function method :
u,— u, + a(t)uu,= B(r)u(l — u), (1)
where a(r), B(t) are arbitrary functions of . When a(r)=0,5(r) is a arbitrary constant,

equation (1) turns to Fisher equation
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w,—u,= Pu(l — u), 2)
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Exact solution of equation (2) was found by Ablowitz and Zeppetella in [21] atC, = i% .

When f(7)=0,x(t) is a arbitrary constant then equation (1) turns to Burgers equation

u,—u, +ouu =0 3)

which is used to describe the spread of sound wave in the medium with viscidity and heat exchange
if we do not consider the medium's frequently dispersive character. The Burgers equations with
variable coefficient can also be used to describe the cylindrical and spherical wave propagation in

models such as over fall, traffic flow and so on.

2. ANALYTICAL SOLUTION

In order to obtain the solution of equation (1), we consider the transformation

u=u@) , &=ke+|z(t)dr )

where k is a constant, 7(7) is an integrable function of t to be determined later, then equation (1)
becomes an ordinary differential equation

T(t)u'+ka'(t)uu'—kzu"—,B(t)u(l—u)zO (5)

Where prime denotes the differential with respect to &

According to the Exp-function method, we assume that the solution of equation (5) can be

expressed in the form

d
z n exp(nf) a e +..+ae”
wta,

u — _n==c — —C 6
©) 3 b e‘”§+...+bpeq5 ©

_Z_‘, b,exp(m&) r

Where ¢, d, p and ¢ are positive integers which are unknown to be further determined, a, and b,
are unknown constants.

In order to determine values of d and ¢, we balance the linear term of highest order in equation (5)
with the highest order nonlinear term, and the linear term of lowest order in equation (5) with the

lowest order nonlinear term, respectively. By simple calculation, we have

o hexp[(d+3q)& ]+ ...
u ()= h, exp[4g&]+... (7
and u(é)u'(f):%exp[(2d+q)§] + ...:hjexp[(2d+2q)§] ¥ .. ©

h,exp[3¢&] + ... h,exp[4¢&] + ...



where /; are to determined coefficient only for simplicity. Balancing highest order of Exp- function
in equation (7) and (8) we have d+3g=2d+2q so d=q )
Similarly to determine values of ¢ and p, we balance the linear term of lowest order in equation (5)

et s, exp[—(c+3p)§}

u(e)= ..t s, exp[-4 pé] (10)
, _s3exp[—(2c+p)§} + ..._...+s3exp[—(2c+2p)§}
and u()u (¢) = ot s, exp[-3¢¢] Cts,exp[—4pé] (

Where §; are determine coefficient only for simplicity. Balancing highest order of Exp- function in
Eq. (10) and (11) we have c¢+3p=2c+2p;c=p (12)
We can freely choose the values of ¢ and d, but the final solution does not strongly depend upon the

choice of values of ¢ and d [19]. For simplicity, we set b; = I, p = ¢ = 1 and d = g = I equation (6)

becomes
4 -<
ae’ +a,+a_e

u(§)=— S (13)

3 ¢ +b,+b_e*
Substituting equation (13) into (5) we have
1
Z[cﬂ +Coe* +Cef +Cy+C e +CLe ¥ +C e ™ | =0 (14)

and

A= (ew () + b+ bien(=£))

¢, = ~aBli) + a\B(1)

C,= —2ab,p(t)-kaa,a(t)+a’b,S(t)+ab,z(t)+ka’ba(t)—a,r(t)—a,B(t)+k*ab,
—k*a, +2a,a,(t)
a’,B(t)-2kaa o(t)—ab,r(t)+2a,ab,(t)—k’ab, —kaje(t)+2ka’ b o (t)-

a p(t)-2a_z(t)+ab’r (t)-2 ab,B(t)+2 aa B(t)+k*a,—ab’ B(t)-4 ka
+2a,b 7(t)+4k*ab  —2ab B(t)+a’b f(t)+ kayab,a(t)

C,= 6k’apb_ +2a,a B(t)-2abpb B(t)—2a b,f(t)—3a_b,r(t)—3k’a b, +
3abyb_t(t)-3k*abb_, +2a,a,b,f(t)+ 2aa.b B (t)-3kaa_a(t)+ 3kaab (1)
=2a,b_ f(1)—ab’ B(t) + a’b,B(1)

C,= az_lb_l,B(t) - a_lb_zlﬁ(t)



C,= —2abb B(t)-kapb®  —ab’ B(t)—ka’ be(t)+a’b,S(t)+k*a_bb.,
+ab’t (t)+ka,ab a(t) — a bpb v (1) + 2a_ab,B(1)

C, ==2ka’a(t)-ab’p(t)+a’p(t)+ a’p p(t)+2ka ab a(t)+ 2ab* 7 (t)—a by (1)
+ 2a,a_b,f(t)—a_b; B(t)+ k’ab_b, +2a ab [(t)— 2ab_b,B(t)-4k’ab’ + ab b, (1)
—2a_b_p(t)-kaa_b,c(t)—2a bt (t)—k’a b, +4k’a_b_ +kajb (1)

9

Equating to zero the coefficients of all powers of €~ yields a set of algebraic equations for

a,.a,, a_, b, by, b, k a(t), p(t), 7(t). Solving the system of equations we obtain
_ 0.4 = _ _ _ e _B()
Case-1 a, = a, a, =0, a_, = ayb, b, = by, b, =0,7(t)=—k’ - f(t), a (1) = 0 (15)

Case-2 ay=0 a, =1, a,=0b,=0, b, =b,7(t)=2k> + @,a(t) = —4k (16)

2
Jb—4
I TR0 20 a, =b by =by, b, = be(t) ==K - B(1). () =2k (17)

Case-3 g, = 5 3

by — b, — 4b
Case-4 a, =— 02 ~, a=1a,=0b=by, b, =0b,7(t)=k+ (1), a(t)=-2k (18)
A1)

Case-5 a,=aya, =1, a,=-b +apb, by=by, b, =0,7(t)=—k>,a(t) = (19)

CaSC-6 a() = a(), al = 19 a_l = 0, bO = bO’ > b—l = b—l

(1)~ K (122b, 8, +72b 7> + 4072 b *a,* +452," b +2a," +37a, |
1032a,26* +26°2 +6,[2b a,* +2a, +Ta b’ +15a,’b
6k (2a,b.,"*N2 +[2b 2} +3a,

a(t)=-2k, B (t)= (20)
(1 A 42b 22 +32ab ' +7alb., +2at +b 2

Substituting equation (15) to (20) into (13) yields

a, +a,b, exp[—kx+j(k2 + ﬁ(t))dl}
exp| kx— (k* + B(1))dt |+ b,

exp{kx + j (2K + ﬁét))dr}

21

u, (x,1) =

(22)

u, (x,t):

exp{kx + j (2> + 'b)ét))dt} +b_, exp {—kx - j K> + ﬂét))dr}



b, ++/b,> —4b_
2

L+b, exp[—kx+ J'(k2 +,3(t))dt]

uy (x,1) = (23)
’ exp[kx — j (k> + ,B(t))dt] +b, +b_, exp [—kx - J'(k2 + ,B(t))dt}
b, —+lb," —4b
exp| kx+ [ (k7 + B(1)r [+ 22—

u, (x,t) = 2 24)

exp| kx+ [ (k7 + B(1))dr |+ b, +b., exp| = [ (& + B (1)t

exp(kx—k’t)+a, + (b +ayb,)exp(—kx+k’t
us(x,t _ P( ) o +(bg : ) p( ) (25)

exp(kx—k’t)+b,
exp(kx+jz‘ (Hdt )+a0

g (x,1) = (26)

exp(k+ [ 7 (0dt ) =26, +b., exp(—kr— [ 7 (1t )

k(1226 2, + 74257 +40N2 b0, +458,’ b +2a," +37a, )

Where 7(t)=

(1) 1072277 +/26°2 +6,[2b a,* +2a,° + Ta b? +15a,'b
3. NUMERICAL ILLUSTRATION:
(1) If we take b, =0 we have u,,(x,)=q, exp(—kx+ j K>+ B (Hdt ) Q27)

2ac—a’

(2) If we take a(t) =a 1saconstant b, =1 and ,B(t) = in equation (22) where c is a
constant then we have u21(x,t):%—% tanh [%(x—ct)} (28)

(a) (b)
Fig I: (a) Solution of Eq. (27) with ay = 1, k = I and (1) = t. (b) Solution of Eq. (28) witha =4, ¢ = 5.

(3) If we take b, =4, b_, =1 and k =1 in equation (23) we have



1+(24243 )cosec[x ~fa+p (t))dt} + coth[x ~fa+p (t))dt}
4cosec[x ~fa+p (t))dt} + ZCoth[x— fa+s (t))dt}

u,, (x,t)=

(4) If we take b, =0, b, =—5 and k =1 in equation (24) we get

cosh[x+ fa+p (t))dt} + sinh[x+ fa+s (t))dt} 5
—4cosh[x +[a+p (t))dt} + 6sinh[x +fa+p (t))dt}

u,, (x,t)=

(5) If we take b, =2 a, =3/2 in equation (25) we have

2tanh(kx—k2t)+;sec(kx—k2t)

”51(x’t):

1+ tanh (kx — k) + 2sec (kx -kt

(b)

Fig.2: (a) Solution of Eq. (29) with 5(t) = cost (b) Solution of Eq. (30) with [(t)
(6) If ap=0 in equation (26) we have

exp(kx+7k2t)
exp(kx+7k’t)—[2b_ +b_, exp(—kx—Tk’t)

g, (x,1) =

O ot
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(29)

(30)

(31

=—1+3sint.

(32)




Fig. 3: (a) Solution of Eq. (31) with k = 2. (b) Solution of Egq. (32)withk =1and b_; = 2.

4. CONCLUSION

The Nonlinear Evolution equation with variable coefficients is investigated by Exp-function
method. The generalized travelling wave solutions of this equation are obtained with the help of
symbolic computation. From these results, we can see that the Exp-function method is one of the
most effective methods to obtain exact solutions.

Finally, it is worthwhile to mention that the Exp-function method can also be extended to other
nonlinear evolution equations with variable coefficients, such as the mKdV equation, the (3 +1)-
dimensional Burgers equation, the generalized Zakharov-Kuznetsov equation and so on. The Exp-

function method is a promising and powerful new method for nonlinear evolution equations.
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